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Motivation

• Want robots to perform a variety of manipulation skills

• Robots need to perform skills reliably despite variations

• Goal: Robots to learn robust and versatile manipulation skills
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Manipulation Mode Structure
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Sensory Feedback
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Continuous Feedback

• Can use tactile feedback to regulate forces during tasks

• Allows robot to compensate for perturbations
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Sensory Feedback
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Skill Initialization and Preconditions

• Initialize skill parameters 

‣ Select skills parameters given current set of objects

• Check preconditions

‣ Conditions in which skill will result in the intended effect
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Learning Affordances of Objects

• Learning manipulations afforded by individual objects

• Learn interactions afforded by pairs of objects
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Fig. 14 The 25 example scenes used for the clustering experiment. The poses of the objects were estimated using detachable
ARTags (removed for clarity). In each scene, we are focusing on the interaction of the object that is not in contact with the
table with the object on the table.

vious work (Kroemer and Peters, 2014). We include it
here for completeness and as an example of how the
proposed method can be used to select object poses.
The kernel logistic regression classifier with the Bhat-
tacharyya kernel was trained using all 60 samples from
the stacking experiment, and the hyperparameters ⌃0

were set to zero. The robot was provided with a small
wooden board, on which to stack the blocks. In order
to avoid all of the blocks being placed directly on the
board, the placing of the blocks was limited to a single

strip along the middle of the board. The sequence of
blocks was predefined. For every block, the robot ob-
served the current scene using a Kinect. It used the
resulting point cloud as the secondary object in the in-
teraction. The robot does not consider the interactions
between blocks further down in the stack. The point
cloud of the current scene is noisy and partial, as it does
not include the sides or backs of the tower’s blocks. The
partial point cloud is suitable for stacking, as the robot
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Learning Object Constellations
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Object Constellations

Robot cannot differentiate between object scenes 
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Object Constellations

• Parts and interactions provide additional details
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Learning Object Constellations

• Learn constellation preconditions using random forests

• Trees test for scene elements in different regions

• Combine predictions from ensemble of 100 trees
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Results
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Preconditions over Skill Parameters

• Skill initialization and preconditions often intertwined

‣ Determine if skill parameters will result in desired effect

• Sample and evaluate different skill parameters (e.g. goals)
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Block Stacking
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Block Stacking
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Sensory Feedback
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Outcome Detection

• Skill executions often terminate in salient sensory events
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Test Case: Guided Peg-in-Hole
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Experimental	Setup	of	manipulation	tasks

11

Z. Su, O. Kroemer, G. Loeb, G. S. Sukhatme and S. Schaal. "Learning to Switch between Sensorimotor Primitives 
using Multimodal Haptic Signals” SAB, 2016



Skill Demonstration
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Segmentation and Goal Detection

• Want to learn skills that terminate in salient events

• Segment demos into skills using change point detection

‣ Use position and tactile sensor signals for segmentation

• Each skill defines a desired goal state

• Learn a goal detector using ST-HMP features and SVMs

‣ Detect goals using low and high frequency tactile signals
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[Adams and McKay 2007]

[Bo et al. 2011, Madry et al. 2014]



Skill Executions
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Failure to Reach the Groove
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Detection and Correction 
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Failure to Reach the Corner
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Detection and Correction 
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Skill Executions
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Sensory Feedback
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Outcome Verification
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Figure 1: (Left) The robotic granular material manipulation setup used to collect a dataset.
(Center) The scoop in its resting position, prepared to pour or shake cellentani pasta. The sil-
houette of the contact microphone is visible through the back of the translucent basin of the scoop.
(Right) The robot with its scoop in its maximum pouring angle, a 60 degree pitch, with the peat top
soil below its scoop.

materials: roasted coffee beans, raw Basmati rice, raw cellentani pasta, peat top soil, and plastic41

injection molding beads. Each of these materials has distinct mechanical properties, including dif-42

ferent acoustic properties, and is relevant to a different potential application.43

2 Related Work44

Experiments with humans and primates have investigated the use of auditory feedback to infer char-45

acteristics of sound sources. Studies have shown that humans are able to classify sound sources46

based on sounds emitted during various perturbations [6]. Previous works have also shown that both47

humans and primates are able to make estimates of metric characteristics of sound sources, such as48

quantities and geometrical dimensions [2, 3, 4, 7].49

Various techniques have proven effective for classifying properties of household objects from me-50

chanical vibrations produced by actively manipulating them. Nakamura et al. [8] used audio data51

collected from shaking objects with a robot arm as one feature among a multimodal set of features52

for classifying toys into arbitrary categories. Sinapov et al. [9] used sound signals from a robot53

actively interacting with different objects (e.g., shaking, pushing, and tapping) to classify and char-54

acterize properties of common household objects. Saal et al. [10] used recordings from touch sensor55

arrays on a robot arm’s finger tips while shaking a bottle to infer the viscosity of the liquid the56

bottle contained. The work that is most similar to our work is that of Griffith et al. [11], who used57

sound recordings of flowing water striking a container to determine whether it was capturing water58

or not. Though their framework was effective for this classification task, our focus is on estimating59

the amount of material captured or released, a continuous value, from sound recordings. Each of60

these experiments demonstrates the strength of learning from audio-frequency vibrations to make61

inferences about physical events and properties of objects in a robot’s environment.62

With respect to pouring, Yamaguchi and Atkeson [12] used stereo vision to estimate the location and63

cross section of liquid flow during robotic pouring, using mainly liquids as well as one fine granular64

material. Schenck and Fox [13] successfully used vision as feedback for learning real-time robotic65

control of pouring liquids. Though these works both demonstrate the strong potential and value66

of using vision for feedback during robotic pouring, vibrotactile feedback presents its own unique67

advantages as an alternative modality of feedback during pouring, e.g., its insensitivity to occlusion68

and lighting variation.69

For estimating volume of materials in containers with constricted openings, Webster and Davies [14]70

were able to estimate different volumes of solid and liquid materials in custom-designed resonator71

vessels using a polynomial regression model based on Helmholtz resonance equations. However,72

this required actively searching for the resonant frequencies of their Helmholtz resonators by ap-73

plying different frequency vibrations to the resonators. Our approach does not require specially74

designed Helmholtz resonator vessels or actively searching for a resonant frequency.75

Machine learning techniques used on audio-frequency data vary widely based on application and76

purpose. Many techniques have found converting raw audio to a spectrogram representation to be a77

very powerful tool [9, 11, 15, 16, 17]. Convolution Neural Networks (CNNs) have been successfully78

2



Scooping Skill
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Shaking Verification
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Learned network has an RMSE of less than 5 grams



(Pouring Termination)

Side note:

Audio signals can also be used to terminate pouring
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Figure 6: Controlling pours of granular material to a desired mass with a SumGRU model, using
only tactile audio feedback.

Our cumulative summing networks, SumFC and SumGRU did not show significant performance267

improvements over the LSTM-based and GRU-based architectures. Though our weak supervision268

of nonnegative pouring flows showed no evidence of significantly improving performance in offline269

estimation, they may be useful in real-time mass estimation application. As shown in the Supple-270

mentary Materials plots, the standard GRU tends to overshoot in estimating amount poured during271

the actual pouring action. By contrast, the SumGRU does not violate the monotonicity constraint,272

resulting in physically possible estimates throughout the pouring action.273

We noticed during tuning that the CNN and SumFC models were rather sensitive to the hyperparam-274

eter settings. The recurrent architectures were much less sensitive to changes in hyperparameters,275

though the LSTM struggled to converge when trained only on the rice dataset, as shown in Figure 3.276

We initially had used spectrograms with a finer discretization in the time dimension, but the LSTM277

often failed to converge with this fine discretization. The performance of our other models was not278

significantly affected.279

These frameworks each proved to be useful in estimating amounts and flows during pouring and280

shaking, and an interesting future extension would be to devise a way to apply these methods to281

estimation of amount during scooping. In the case of scooping, we expect less correlation of sound282

with the mass scooped, since the flow of material into the scoop is not necessarily unidirectional. We283

thus expect that applying these methods directly to estimation of granular material amounts during284

scooping would be more difficult.285

6 Conclusion286

We proposed learning frameworks for estimating amounts and flows of granular material from au-287

dio data collected during robotic pouring and shaking tasks. The evaluated methods included state288

of the art frameworks used in learning for audio signal processing. With an audio signal trans-289

formed into a spectrogram, the CNN-based framework was designed to extract hierarchical features290

from the structure of the spectrogram, whereas the recurrent models, based on LSTM and GRU291

units, were designed to extract variable-length temporal relationships in the spectrogram. We also292

proposed a weakly supervised approach to estimating the amount of flow at each time step. The293

approach exploits the monotonic nature of pouring and applies a nonnegativity constraint to capture294

the increasing amount of mass poured over time.295

We evaluated each approach’s effectiveness on a dataset collected from pouring and shaking five296

distinct granular materials. The frameworks based on recurrent units were consistently the most297

accurate, with RMSEs often around 2.5g. They were also able to reliably generalize among multiple298

materials and even to previously unseen materials.299

In the future, we will extend the proposed framework to provide continuous low-level feedback300

control, e.g., servo the tilt angle, and explore additional manipulation tasks, e.g., scooping and301

cutting.302
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Verify Grasp with Shaking Action
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Y. Chebotar*, K. Hausman*, O. Kroemer, G. S. Sukhatme, S. Schaal. "Generalizing 
Regrasping with Supervised Policy Learning". ISER, 2016

Y. Chebotar*, K. Hausman*, Z. Su, G. S. Sukhatme,S. Schaal. "Self-Supervised Regrasping 
using Spatio-Temporal Tactile Features and Reinforcement Learning". IROS, 2016

• Also use verification to get self-supervised ground truth



 Self-Supervised Outcome Detection

• Learn to predict errors using self-supervised data 

• Learn a classifier using ST-HMP features and SVM

• What to do if the grasp fails?
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Predict grasp stability

Success

Failure

Continue with  
the grasp

?????

Lift object slightly

•  

•  

•  

‣ Use lift skill as a previous skill for initialising a regrasp



 Regrasping

• Learn to predict errors and regrasp using tactile data 

• Adjust gripper position and orientation based on tactile

 35

Predict grasp stability
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Failure

Continue with  
the grasp 
(Shake)

 Adjust gripper pose 
based on tactile signal

Lift object slightly



Reinforcement Learning
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Learn regrasp policy parameters using relative entropy policy search
[Peters et al. 2010]



Regrasping Results
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Regrasping Results
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Sensory Feedback
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  Key Challenge: Preconditions for Learning
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Conclusion

• Learn skills that exploit manipulations’ mode structure

‣ Goals and errors match mode transitions for more robust skills

• Selecting and initialising skill

‣ Consider contacts for setting goals and checking preconditions

• Monitoring skills during executions

‣ Detect  salient sensory events during mode 

• Verifying skill outcomes

‣ Verify mode transitions based on changing dynamics

‣ Use self-supervised 

• Future challenge: Learn to predict what can be learned
 42


