Increasing the Robustness of Manipulations by Monitoring Skill Executions

Oliver Kroemer

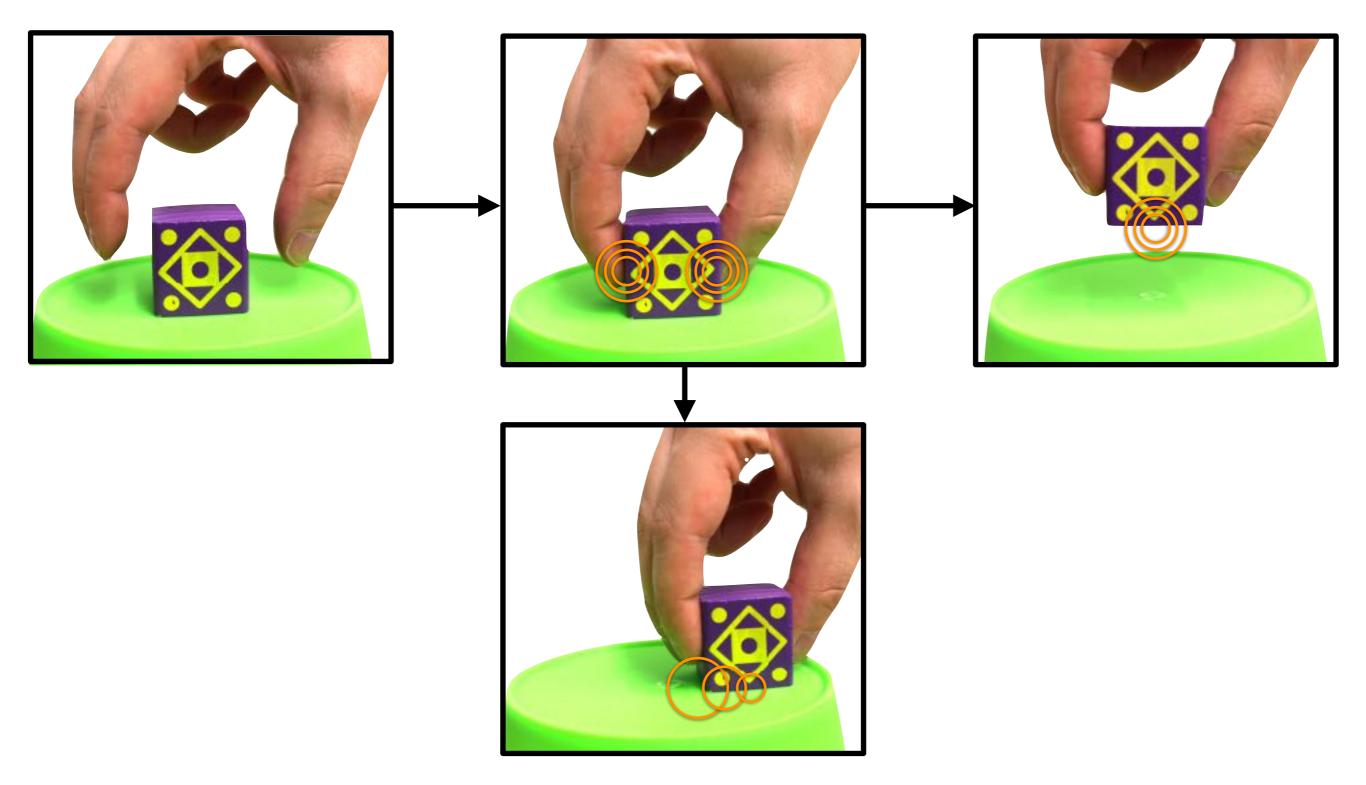
Carnegie Mellon University Robotics Institute

Motivation

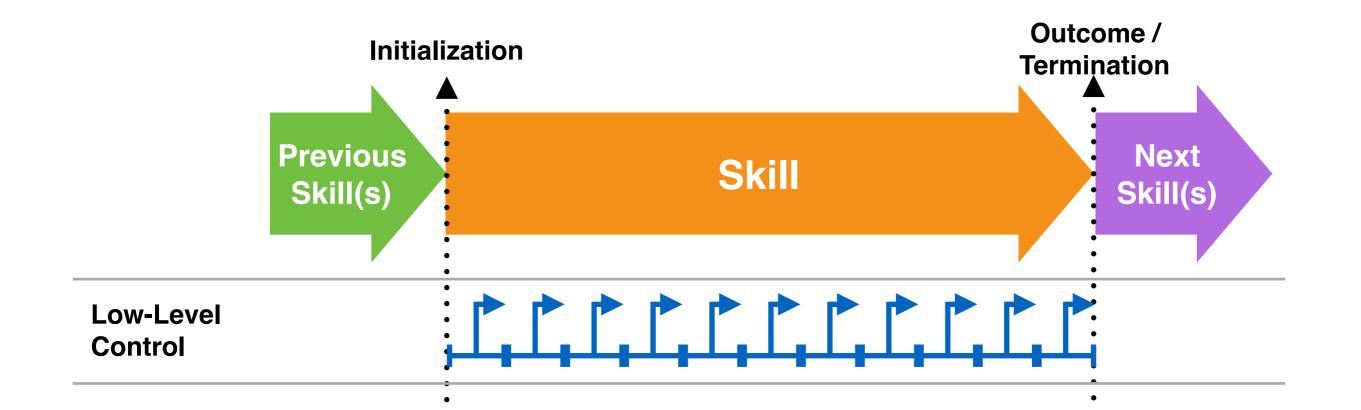
• Want robots to perform a variety of manipulation skills

- Robots need to perform skills reliably despite variations
- Goal: Robots to learn robust and versatile manipulation skills

Manipulation Mode Structure

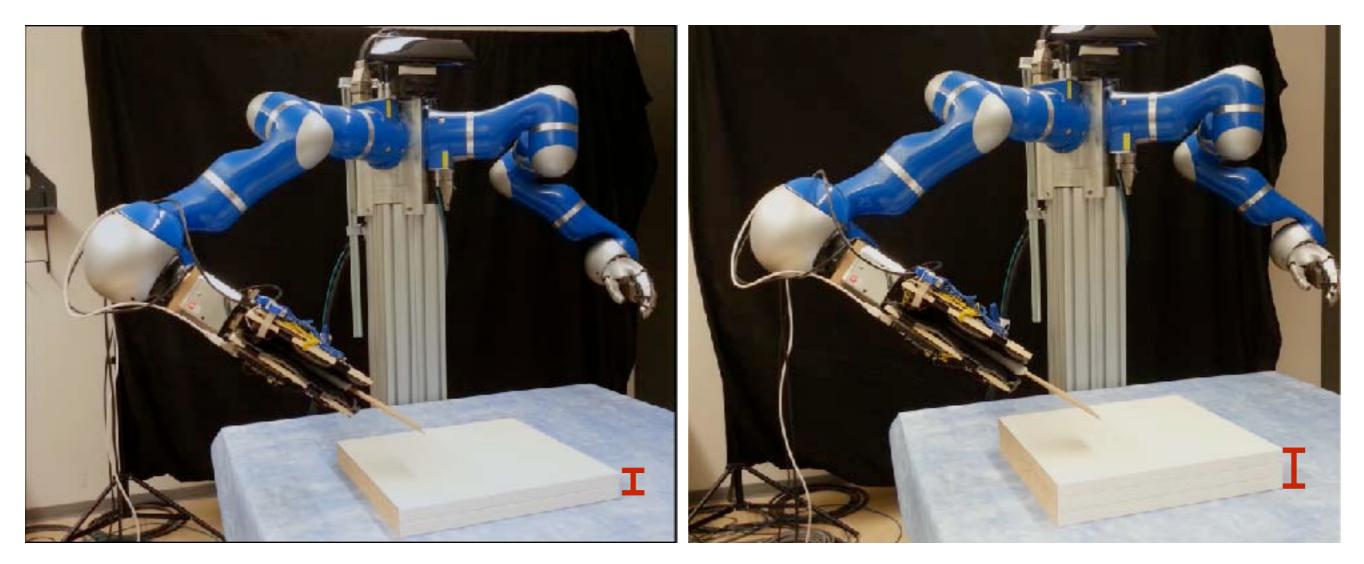


Sensory Feedback



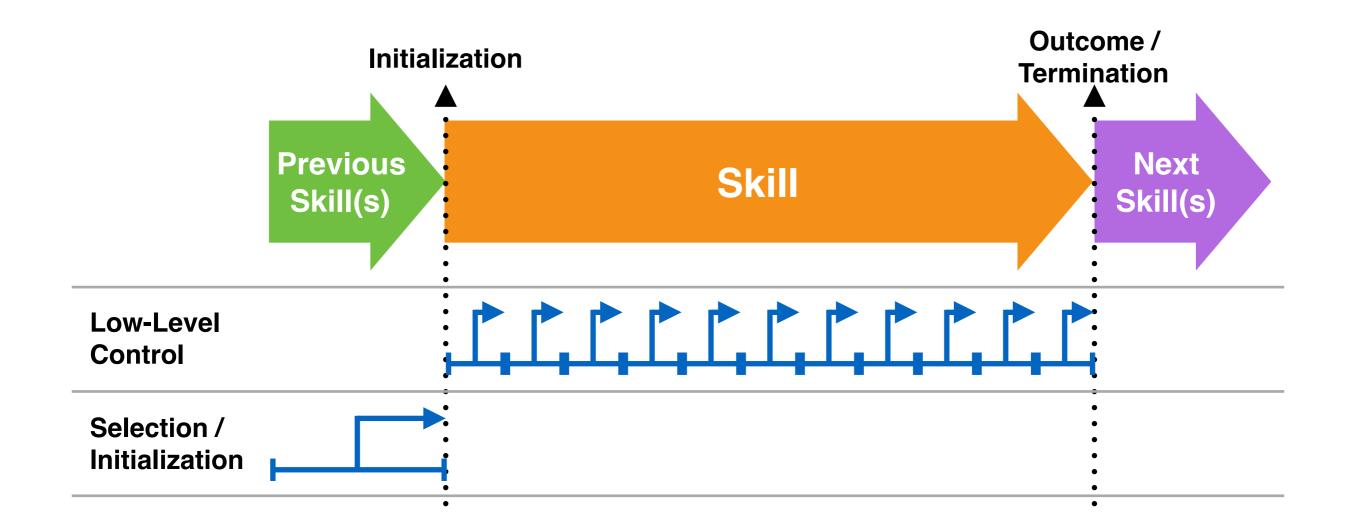
Continuous Feedback

• Can use tactile feedback to regulate forces during tasks



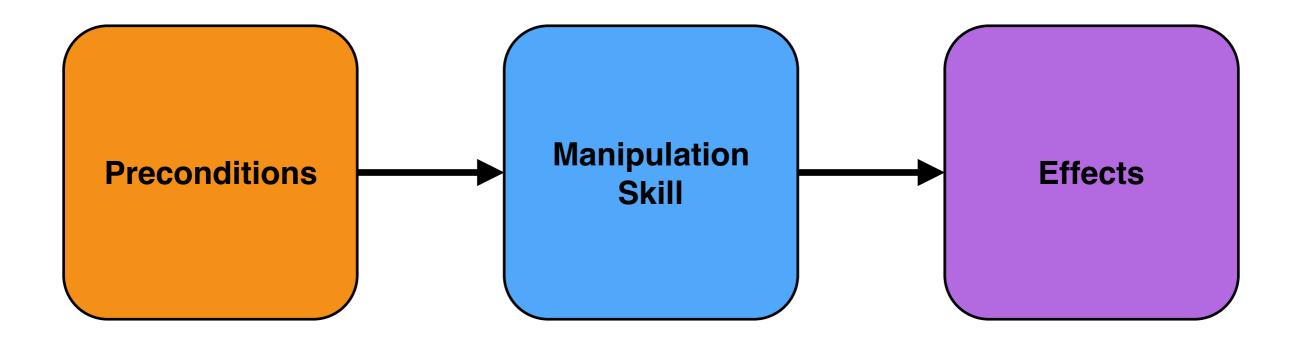
Allows robot to compensate for perturbations

Sensory Feedback



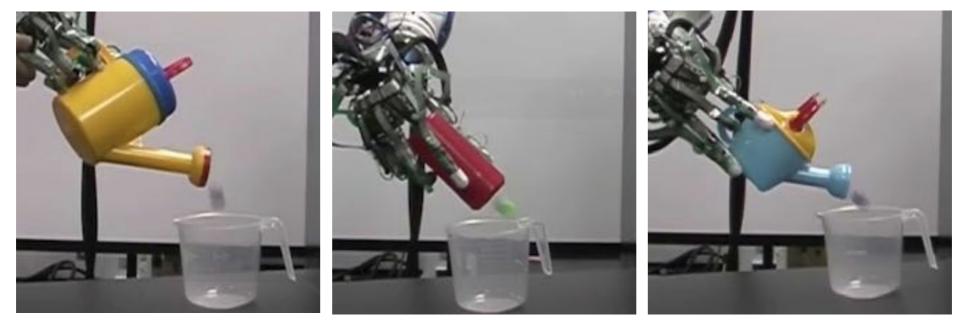
Skill Initialization and Preconditions

- Initialize skill parameters
 - Select skills parameters given current set of objects
- Check preconditions
 - Conditions in which skill will result in the intended effect



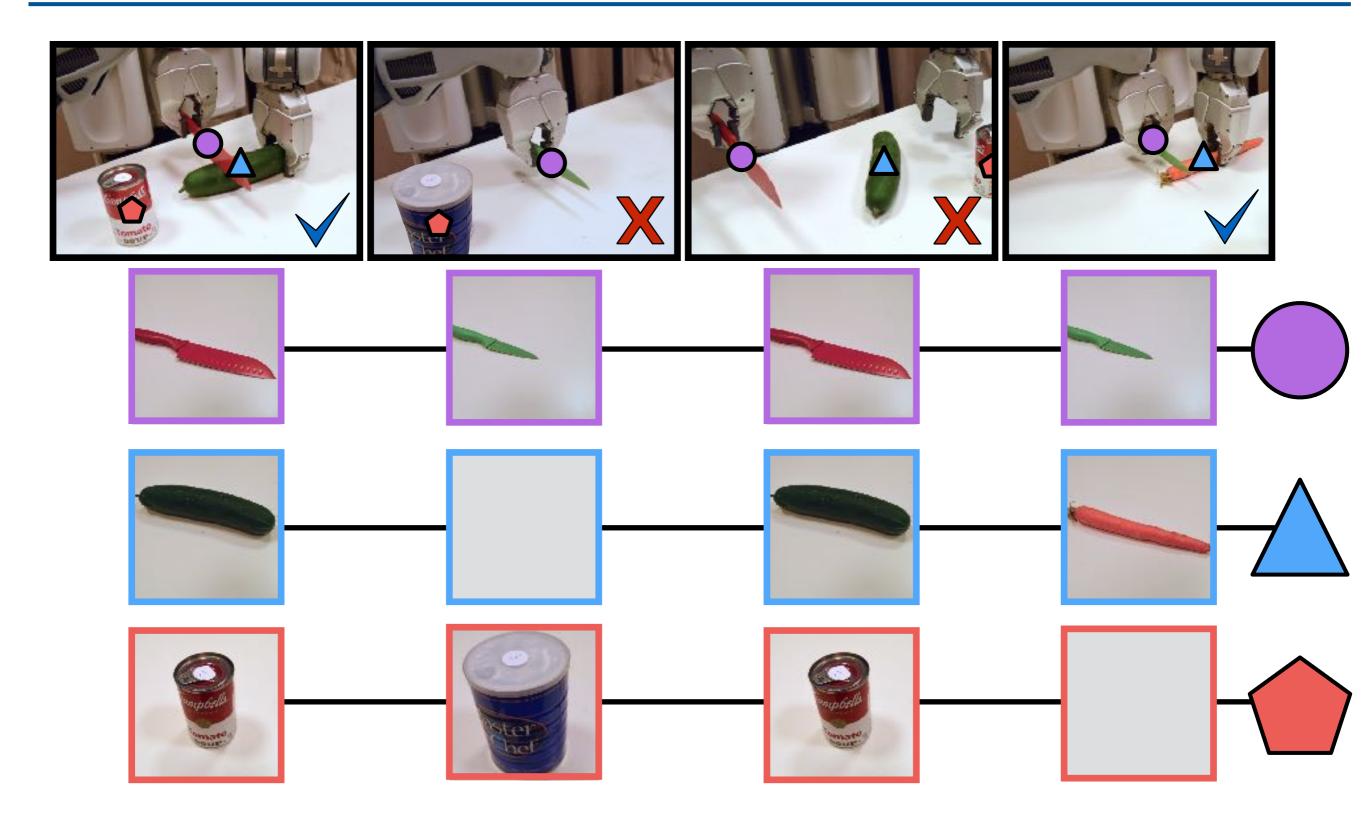
Learning Affordances of Objects

• Learning manipulations afforded by individual objects



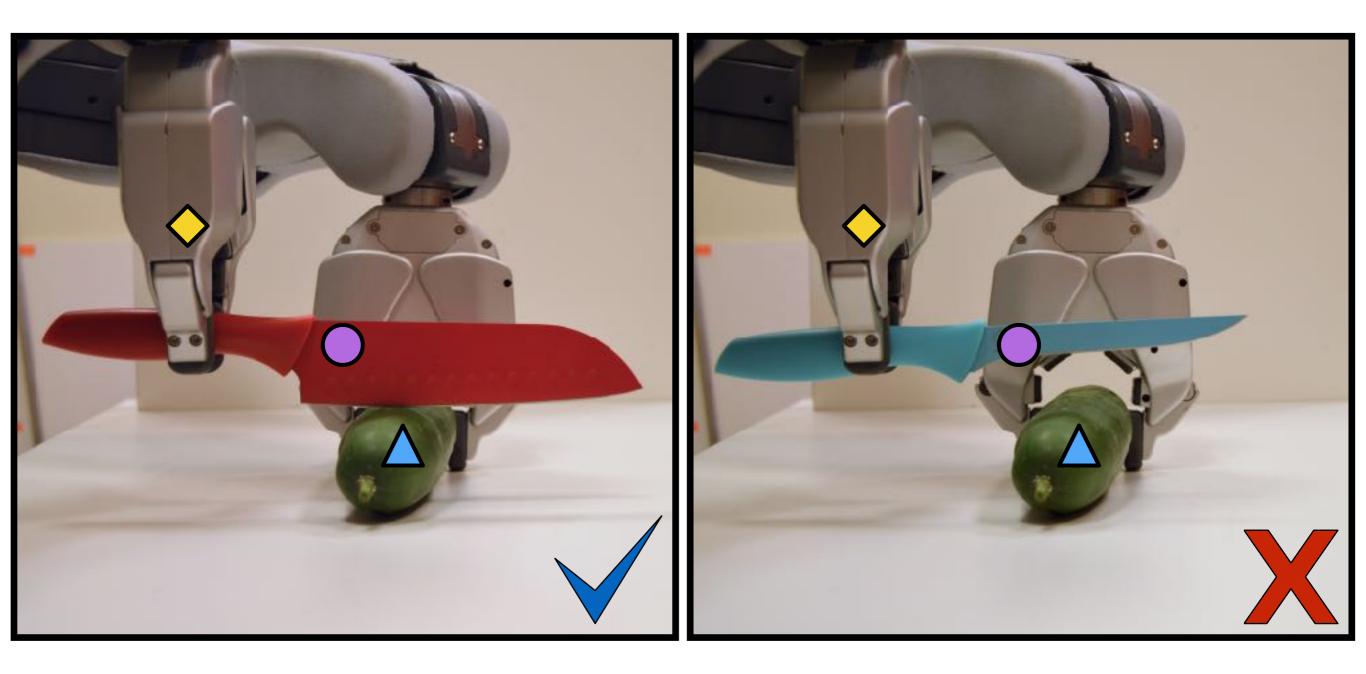
Learn interactions afforded by pairs of objects

Learning Object Constellations



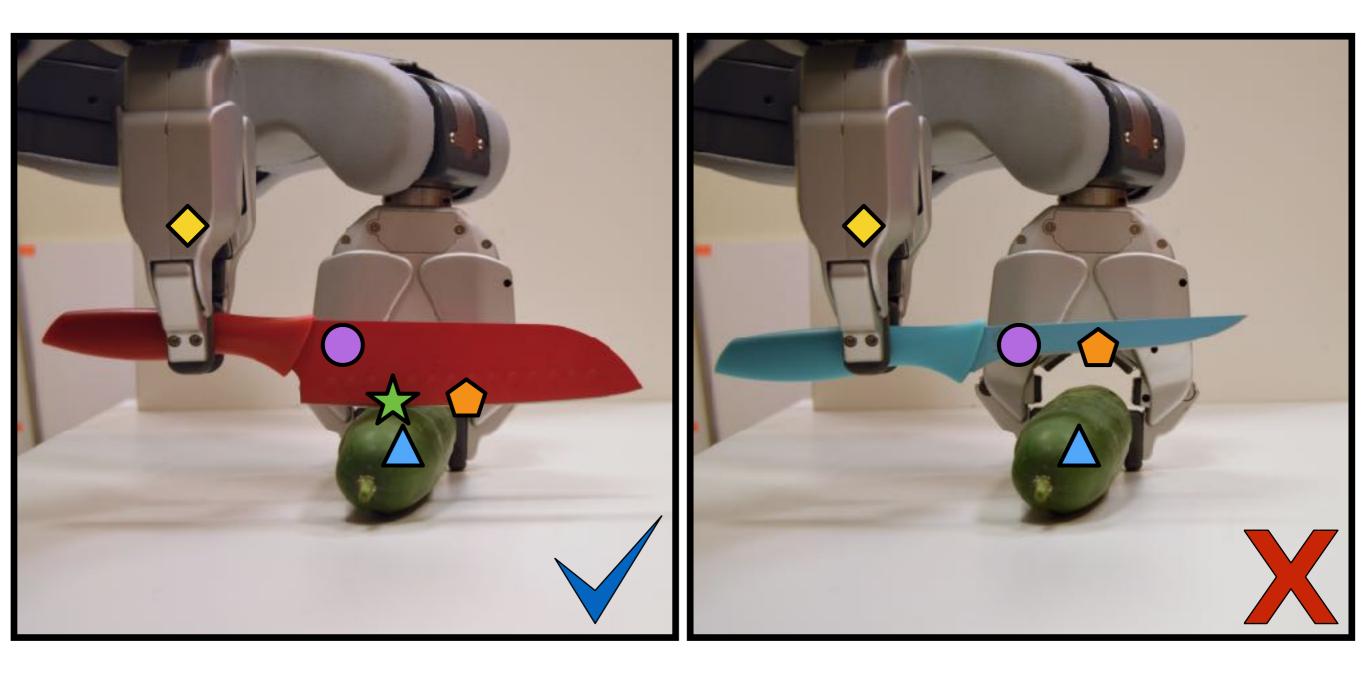
Object Constellations

Robot cannot differentiate between object scenes



Object Constellations

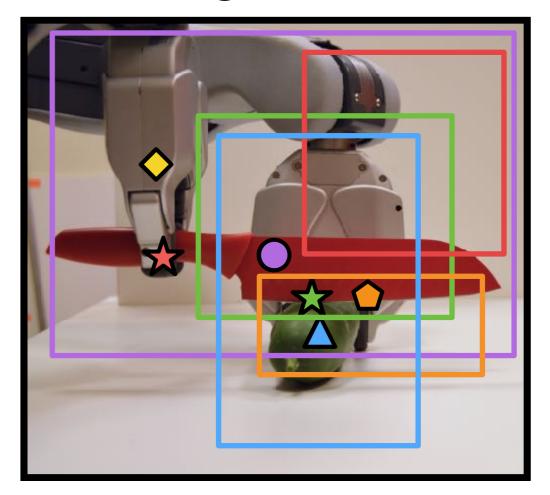
• Parts and interactions provide additional details



Learning Object Constellations

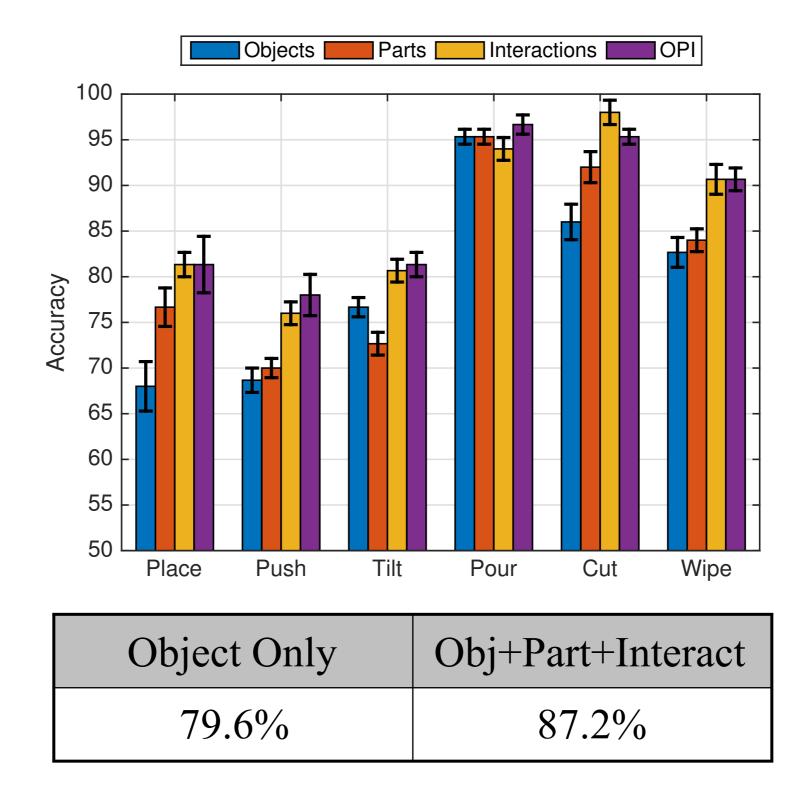
• Learn constellation preconditions using random forests





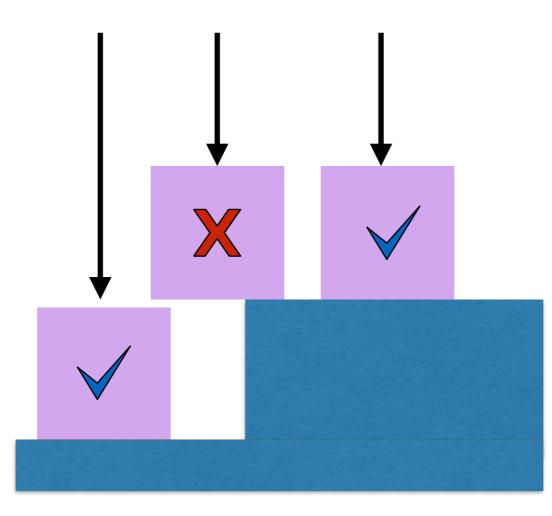
- Trees test for scene elements in different regions
- Combine predictions from ensemble of 100 trees

Results

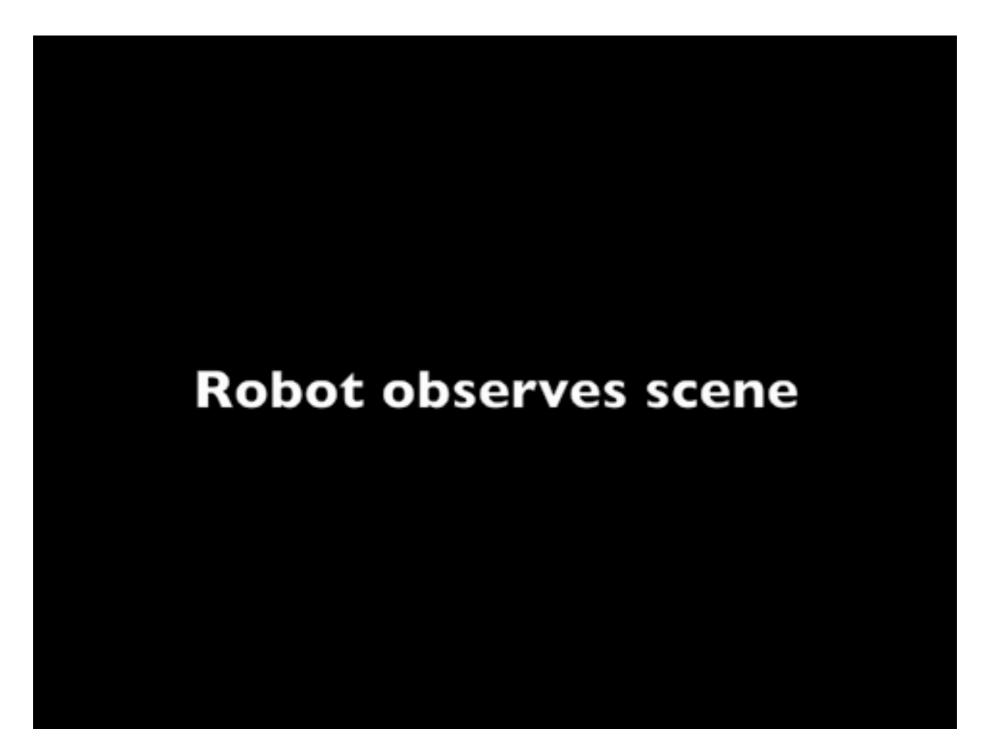


Preconditions over Skill Parameters

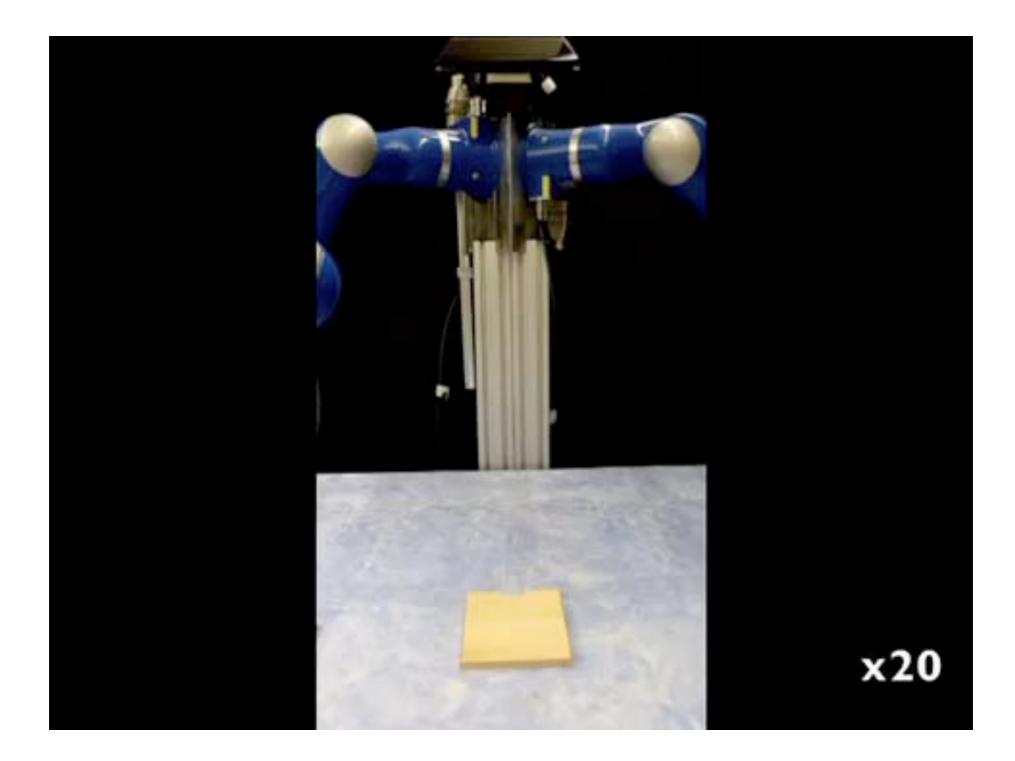
- Skill initialization and preconditions often intertwined
 - Determine if skill parameters will result in desired effect
- Sample and evaluate different skill parameters (e.g. goals)



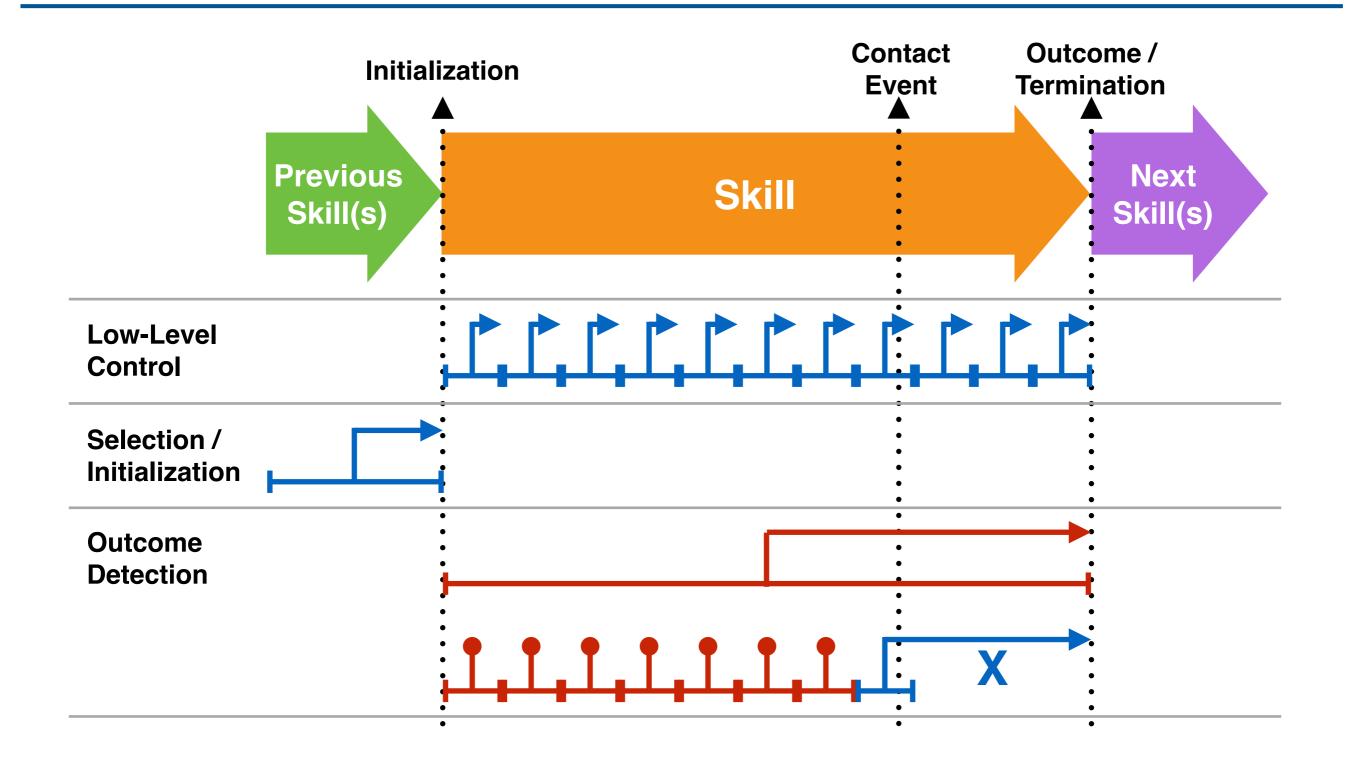
Block Stacking



Block Stacking



Sensory Feedback

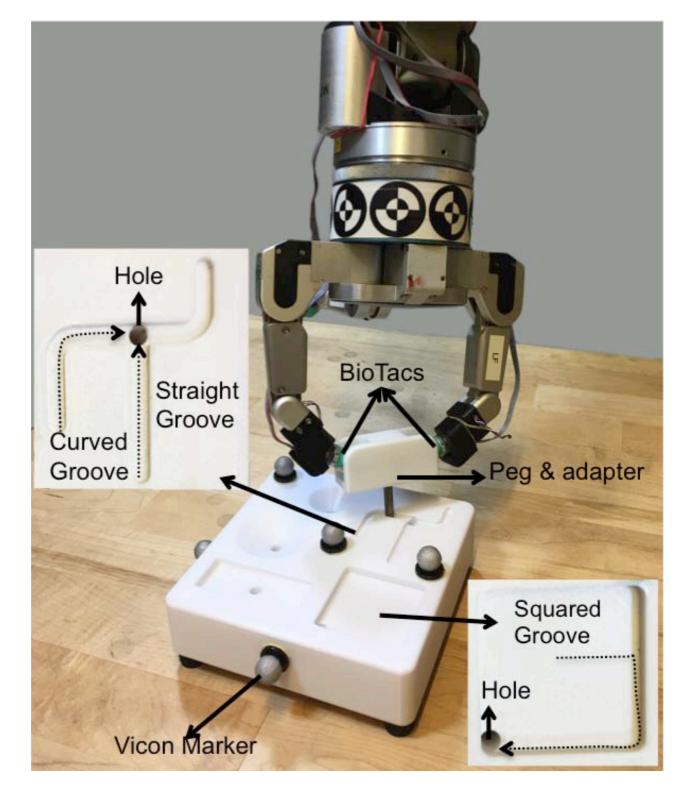


Outcome Detection

• Skill executions often terminate in salient sensory events

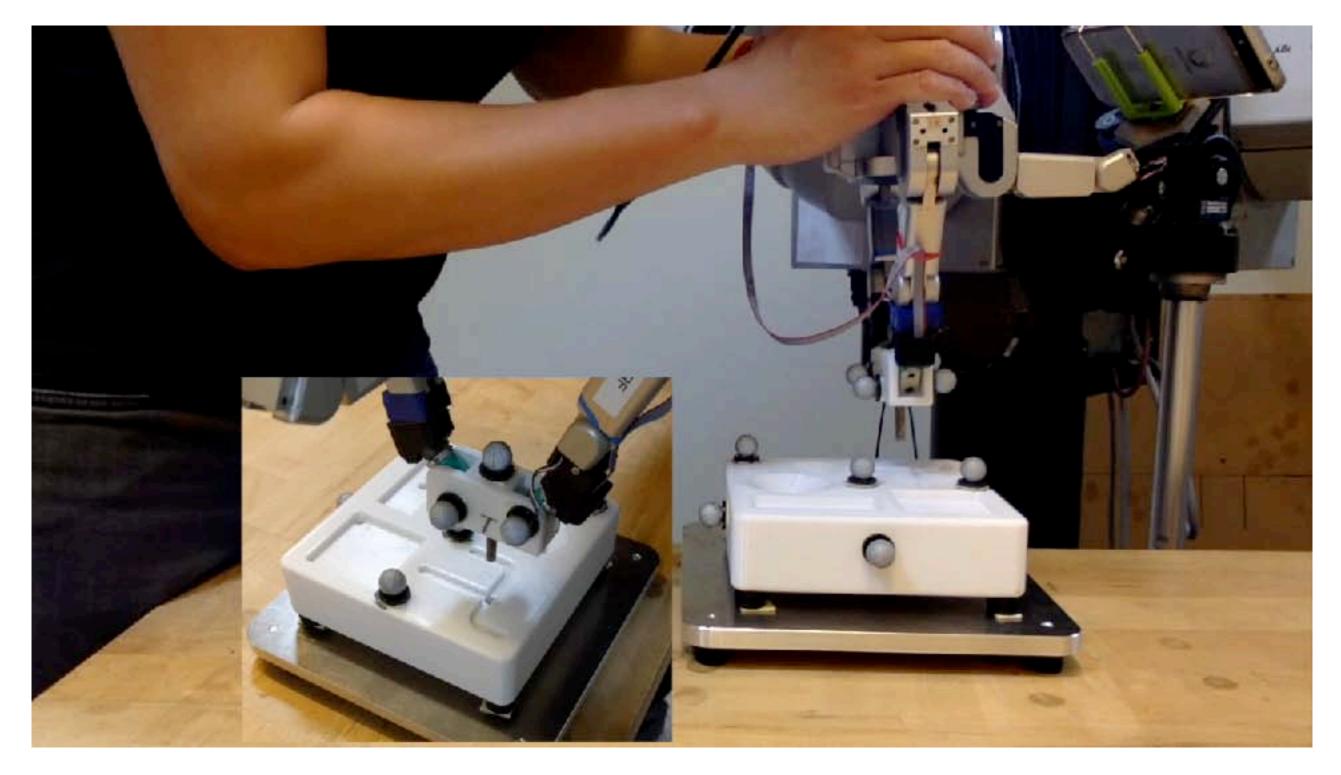
Test Case: Guided Peg-in-Hole

19



Z. Su, O. Kroemer, G. Loeb, G. S. Sukhatme and S. Schaal. "Learning to Switch between Sensorimotor Primitives using Multimodal Haptic Signals" SAB, 2016

Skill Demonstration



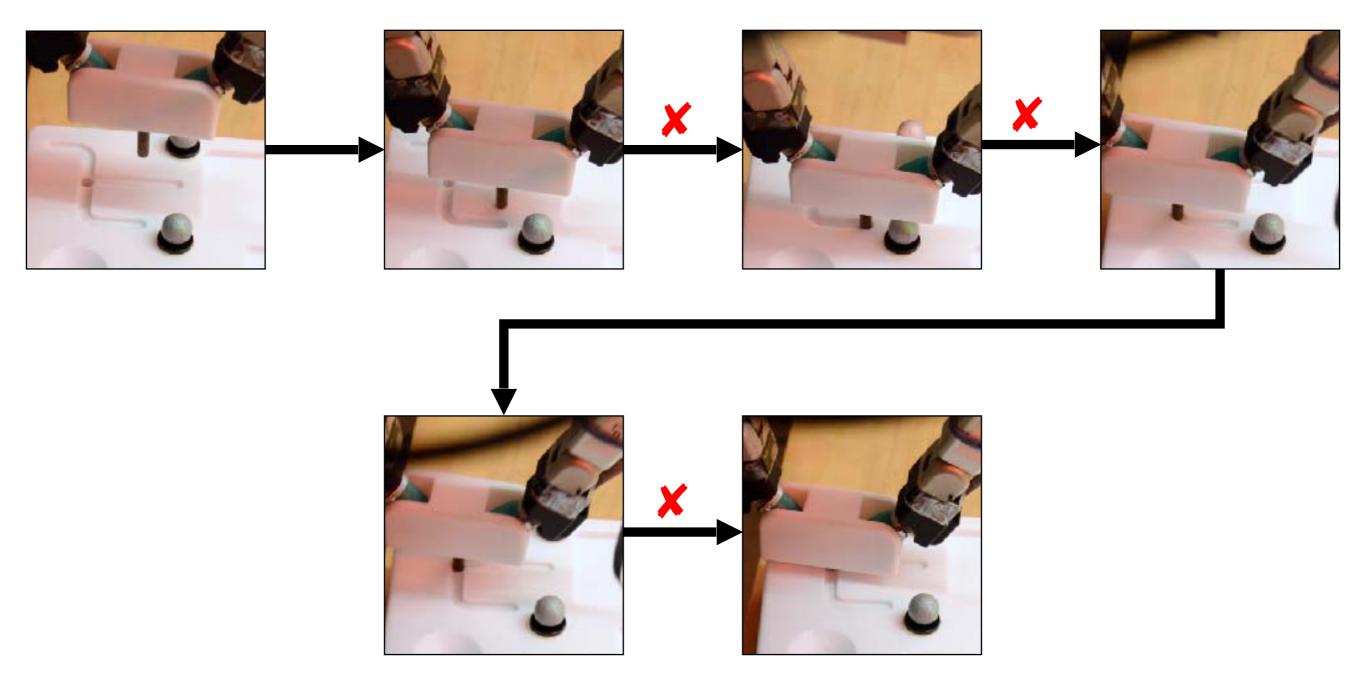
• Want to learn skills that terminate in salient events

- Segment demos into skills using change point detection [Adams and McKay 2007]
 - Use position and tactile sensor signals for segmentation

• Each skill defines a desired goal state

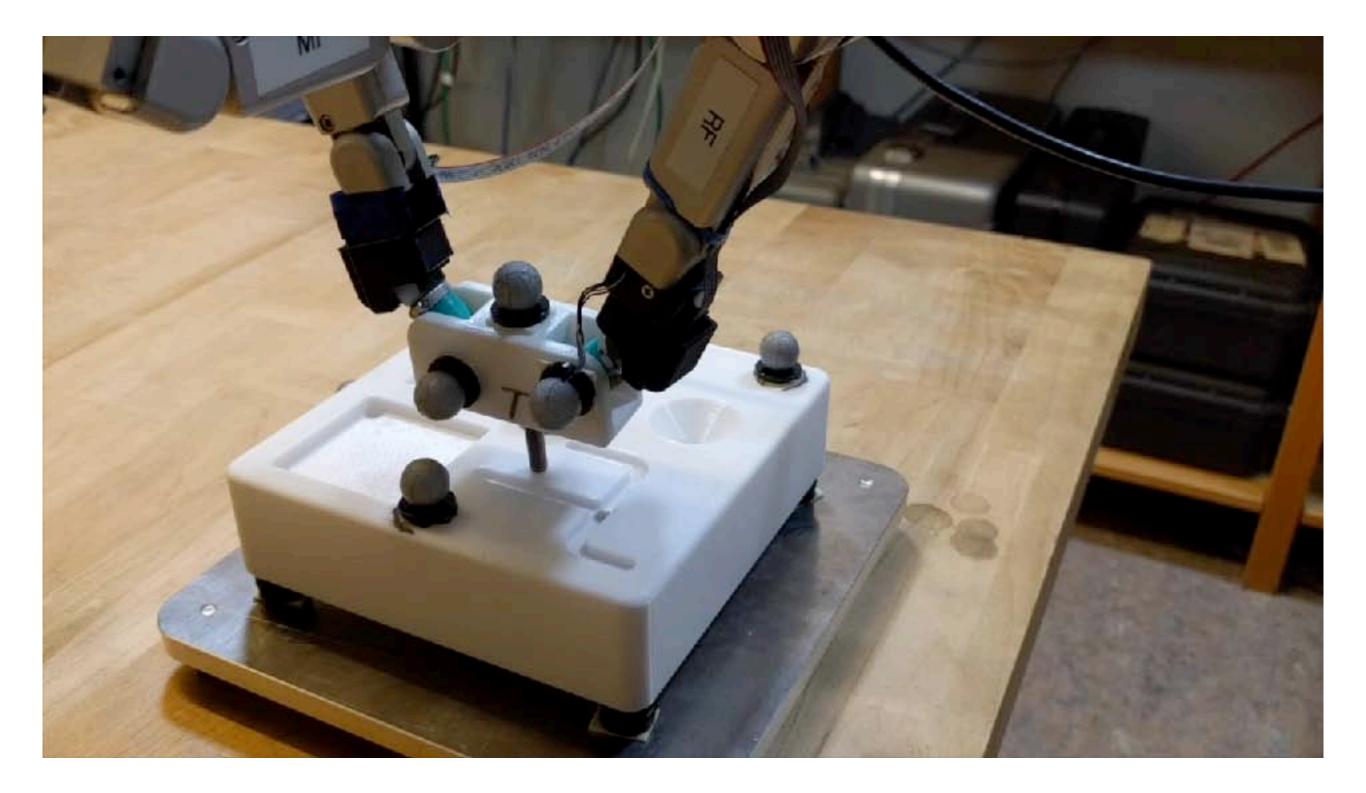
Learn a goal detector using ST-HMP features and SVMs
 [Bo et al. 2011, Madry et al. 2014]
Detect goals using low and high frequency tactile signals

Skill Executions

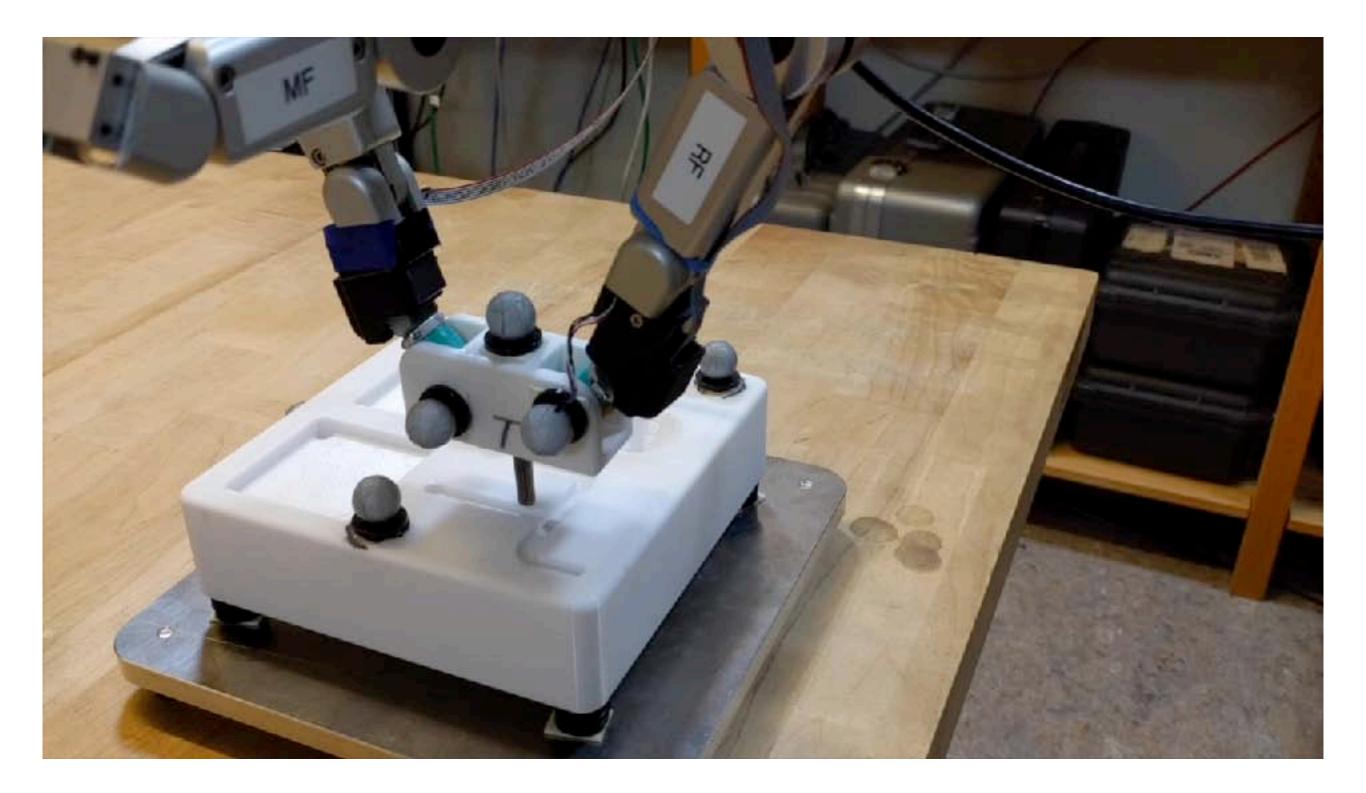


Reattempt motion from current location with slightly higher force

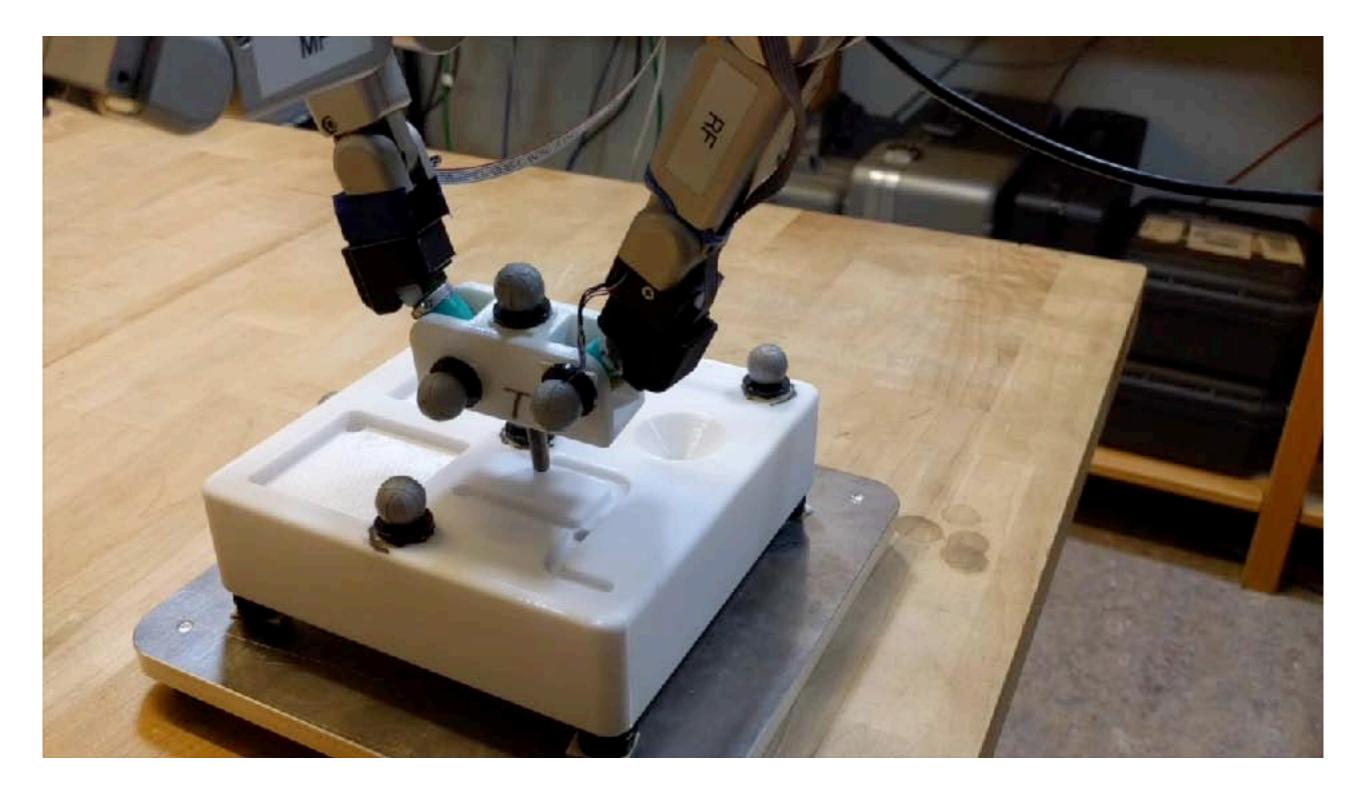
Failure to Reach the Groove



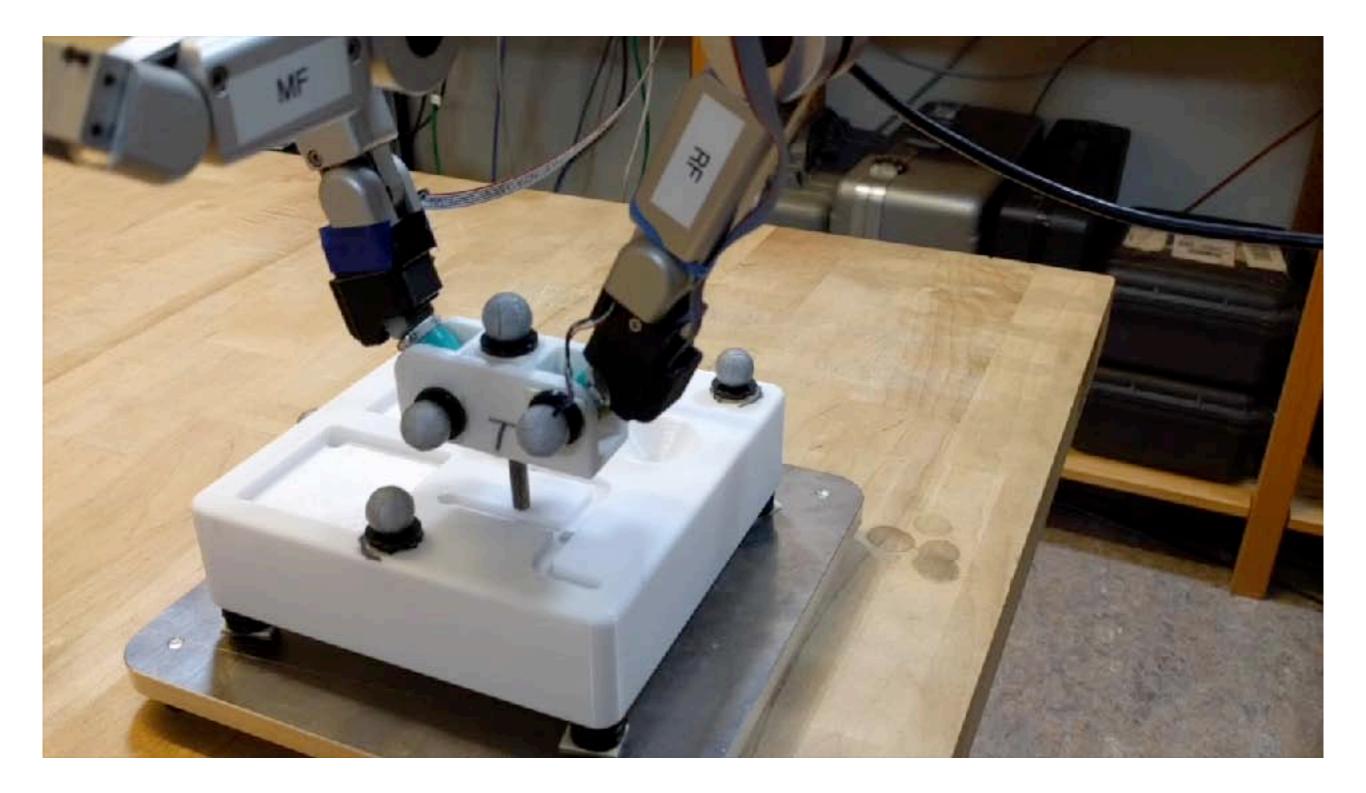
Detection and Correction



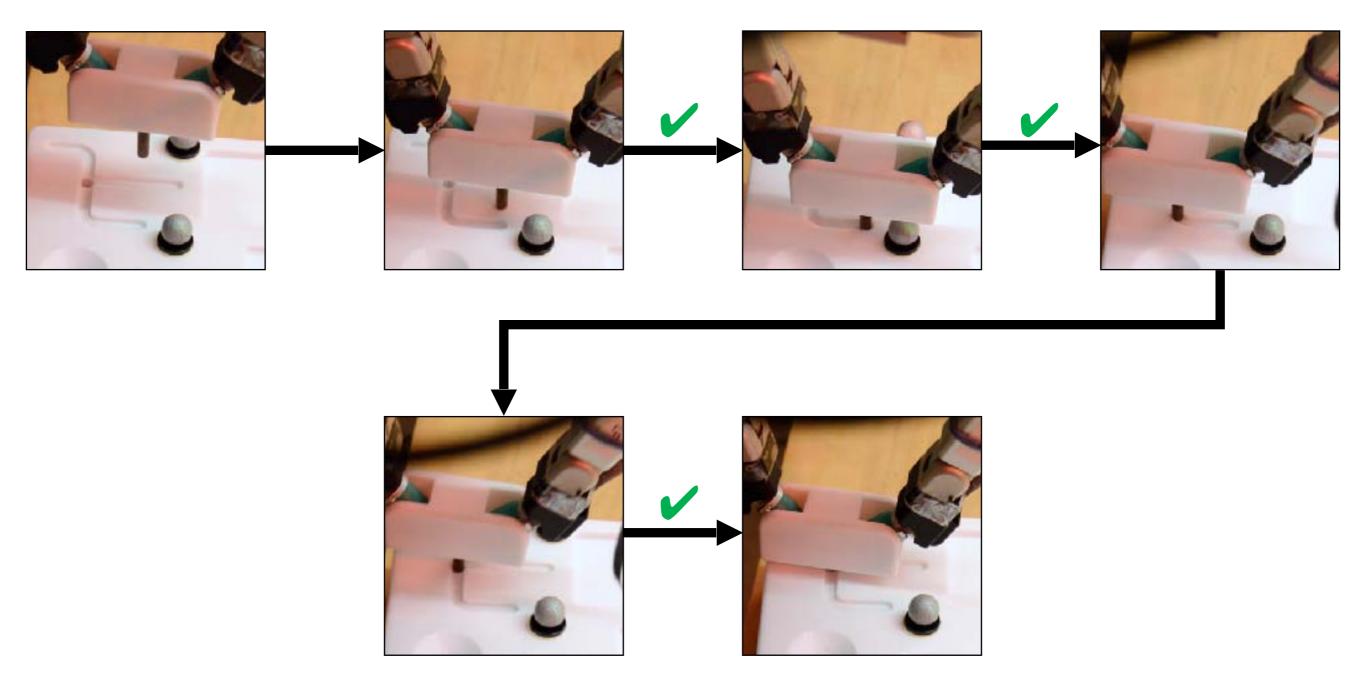
Failure to Reach the Corner



Detection and Correction

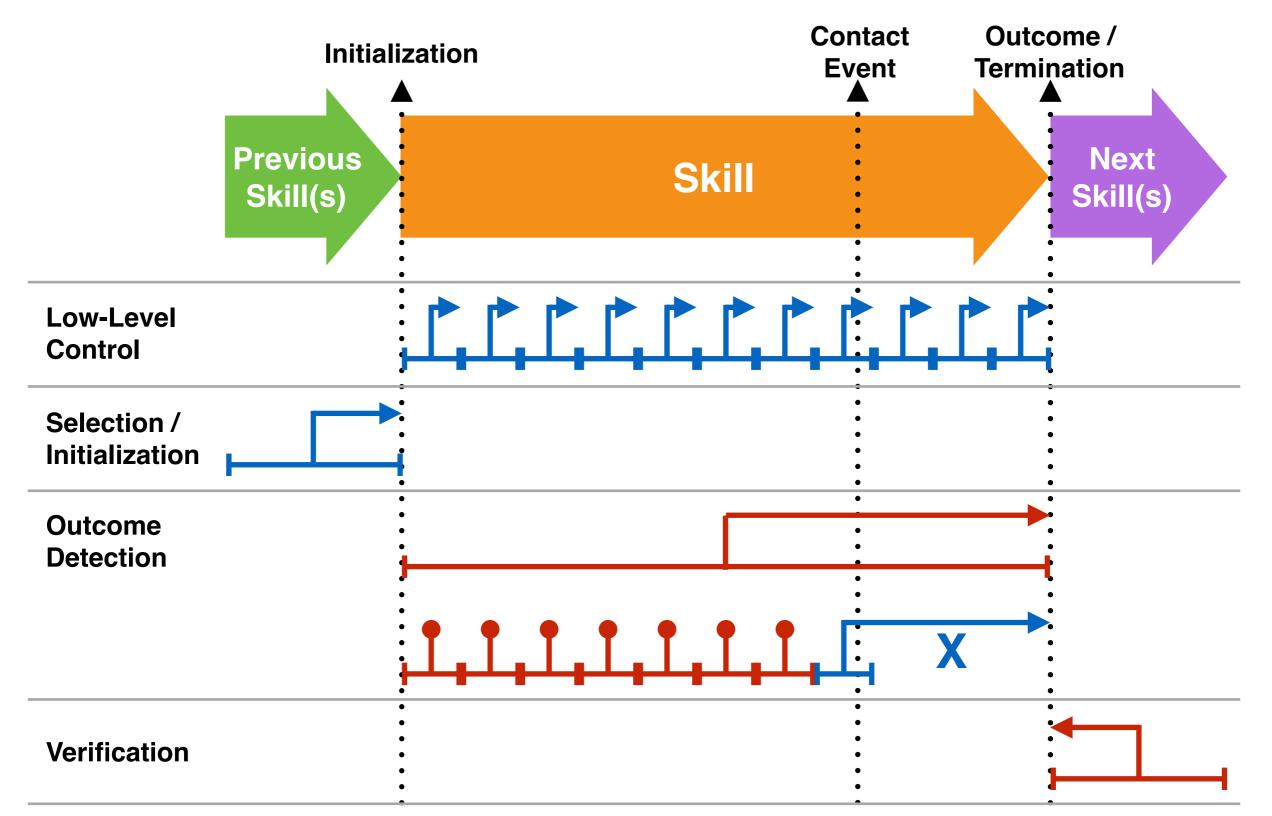


Skill Executions



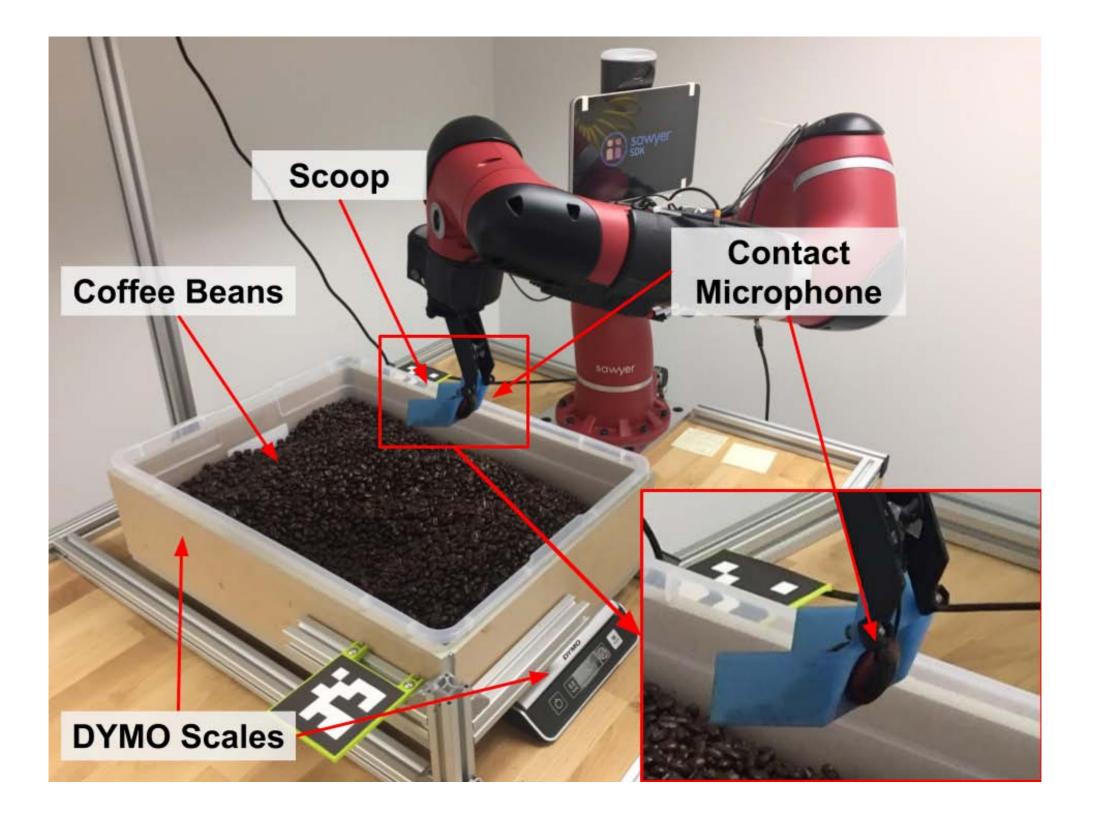
Reattempt motion from current location with slightly higher force

Sensory Feedback

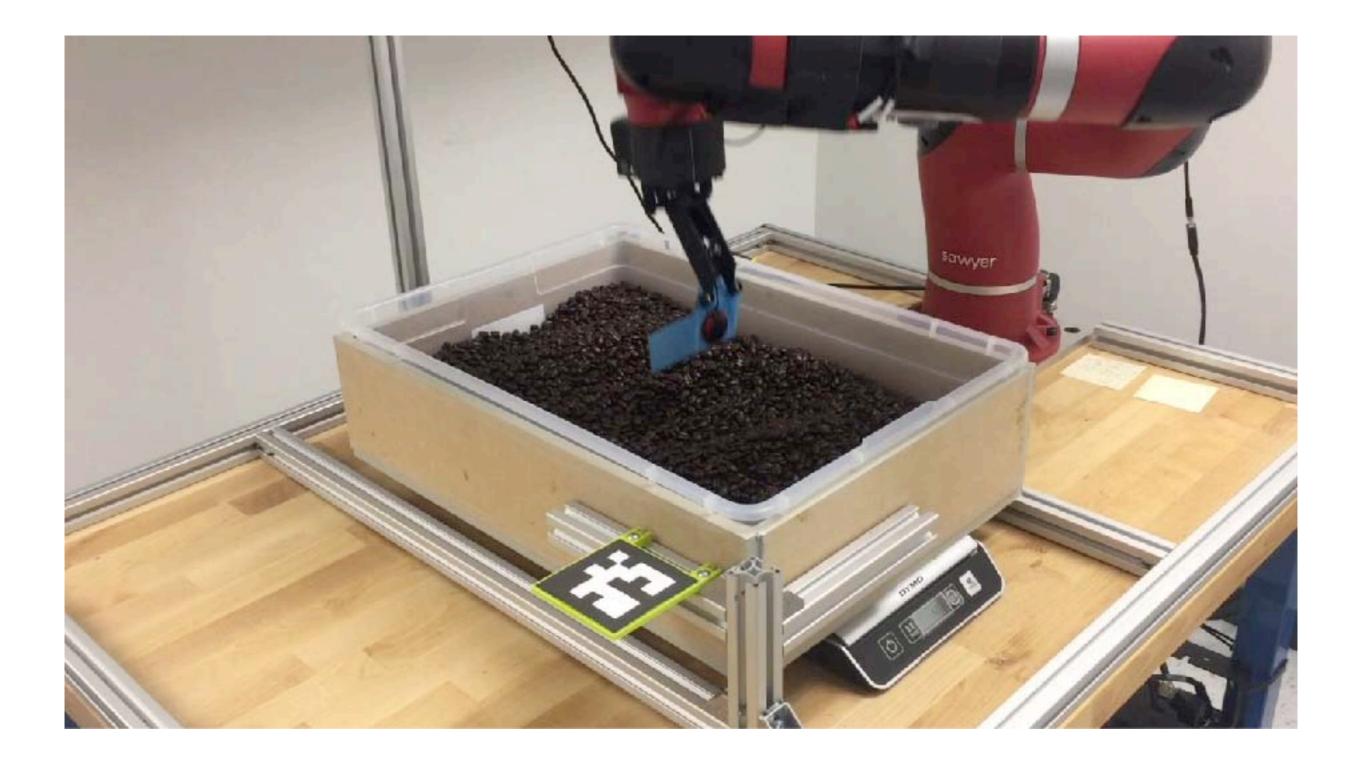


Use interactive perception to determine outcome

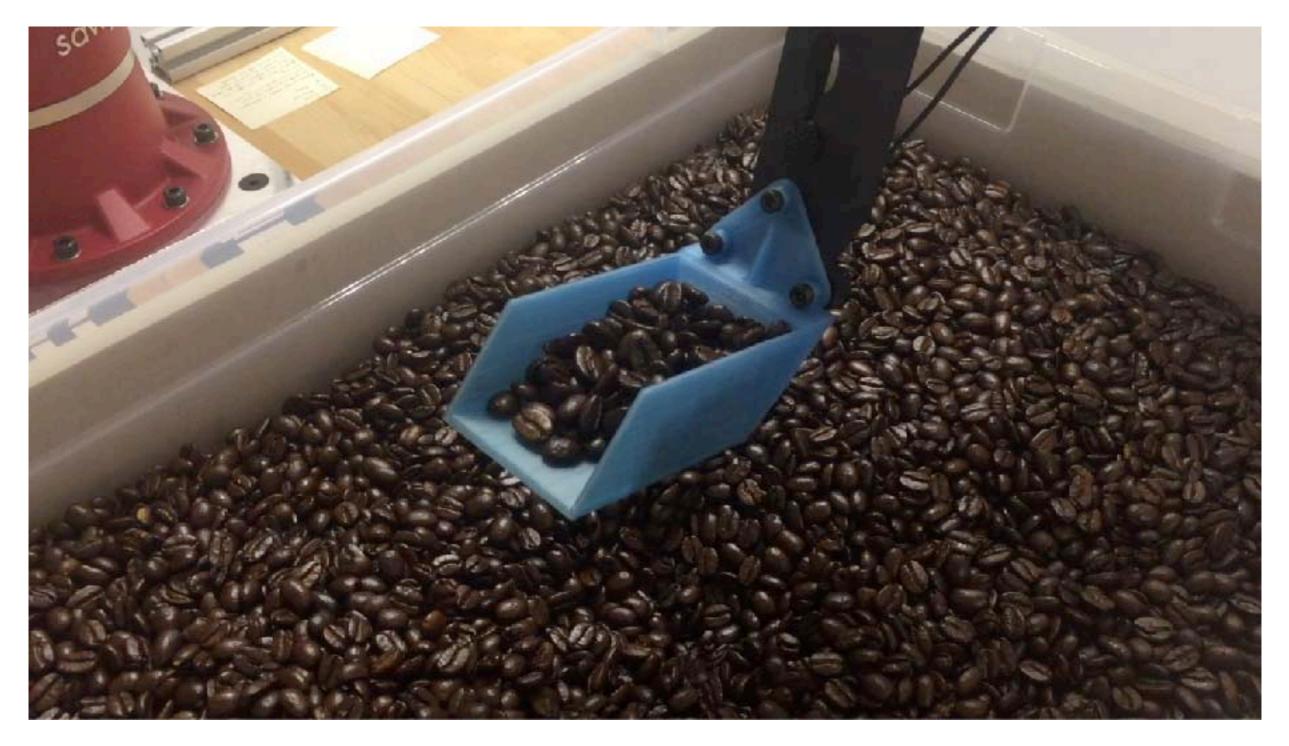
Outcome Verification



Scooping Skill



Shaking Verification

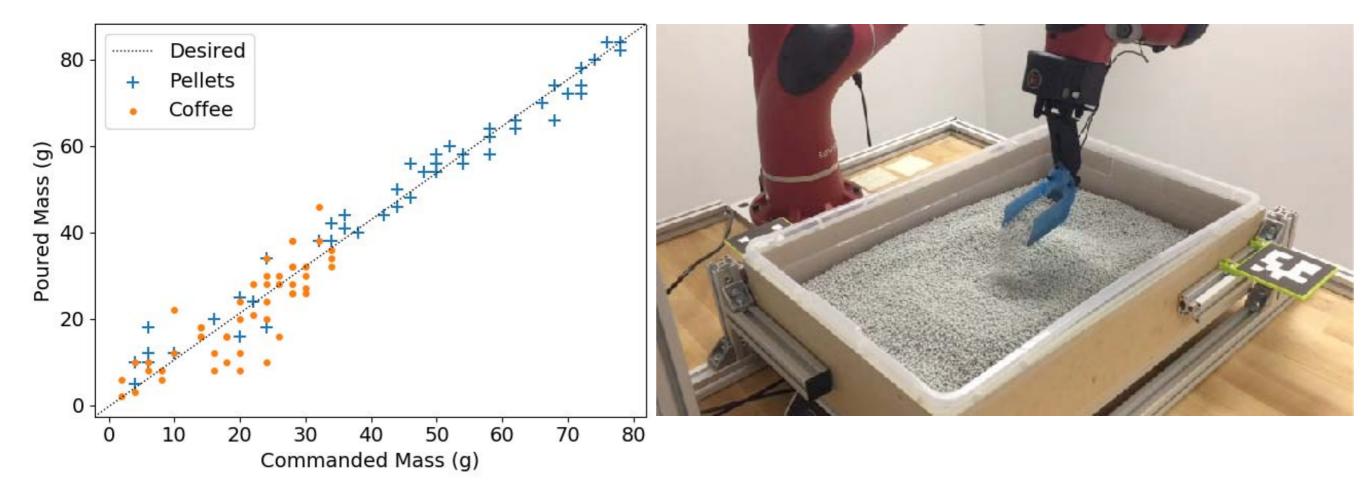


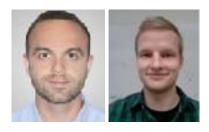
Learned network has an RMSE of less than 5 grams

(Pouring Termination)

Side note:

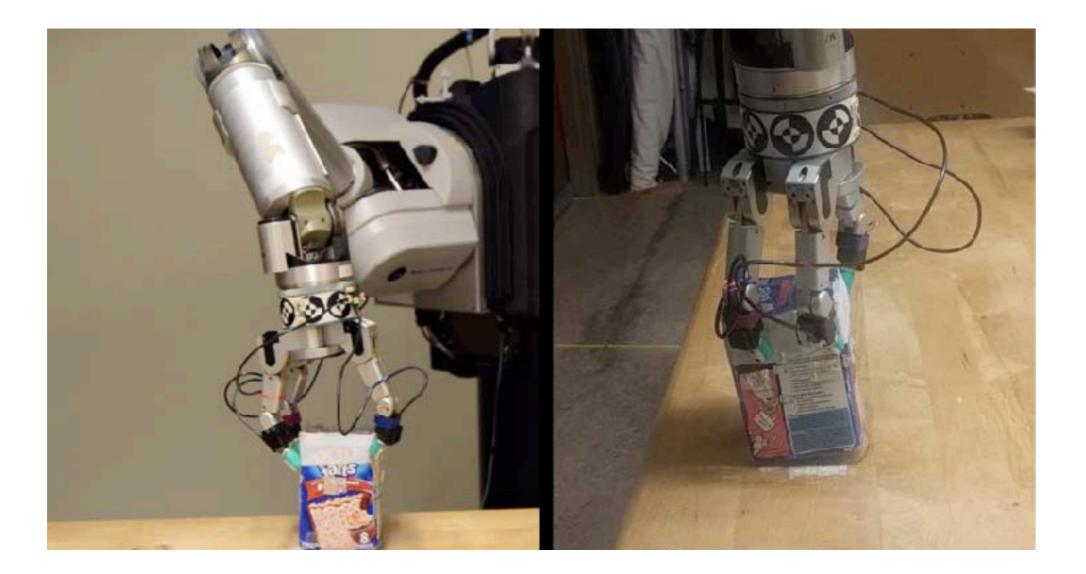
Audio signals can also be used to terminate pouring





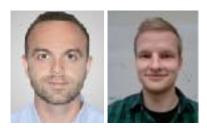
Verify Grasp with Shaking Action

• Also use verification to get self-supervised ground truth



Y. Chebotar*, K. Hausman*, O. Kroemer, G. S. Sukhatme, S. Schaal. "Generalizing Regrasping with Supervised Policy Learning". ISER, 2016

Y. Chebotar*, K. Hausman*, Z. Su, G. S. Sukhatme, S. Schaal. "Self-Supervised Regrasping using Spatio-Temporal Tactile Features and Reinforcement Learning". IROS, 2016

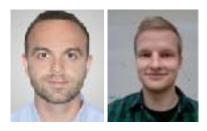


Self-Supervised Outcome Detection

• Learn to predict errors using self-supervised data

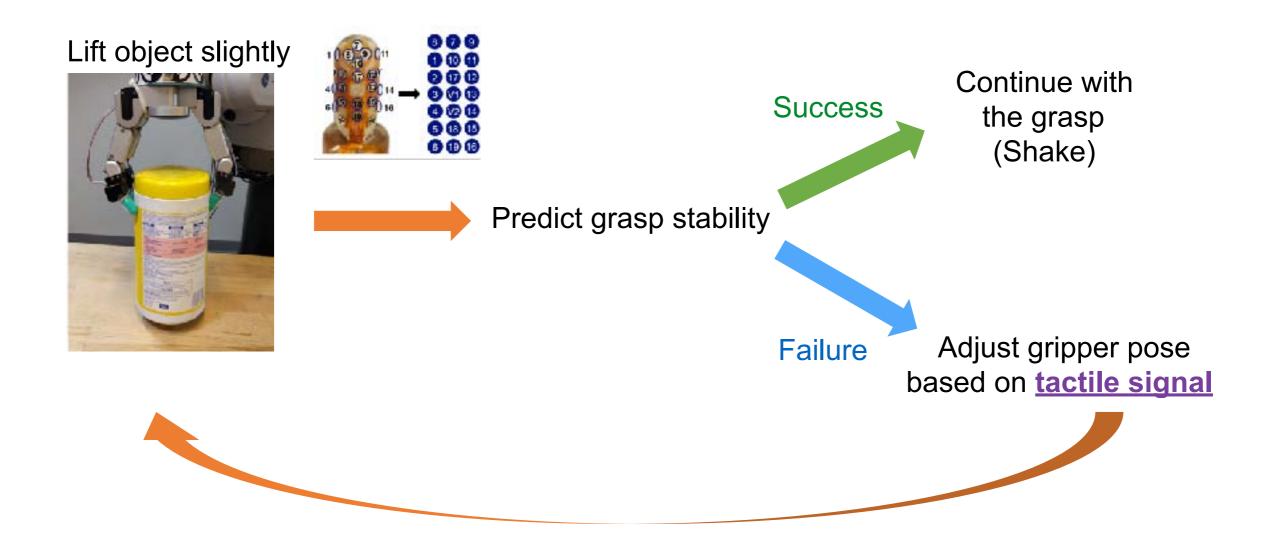


- Learn a classifier using ST-HMP features and SVM
- What to do if the grasp fails?
 - Use lift skill as a previous skill for initialising a regrasp



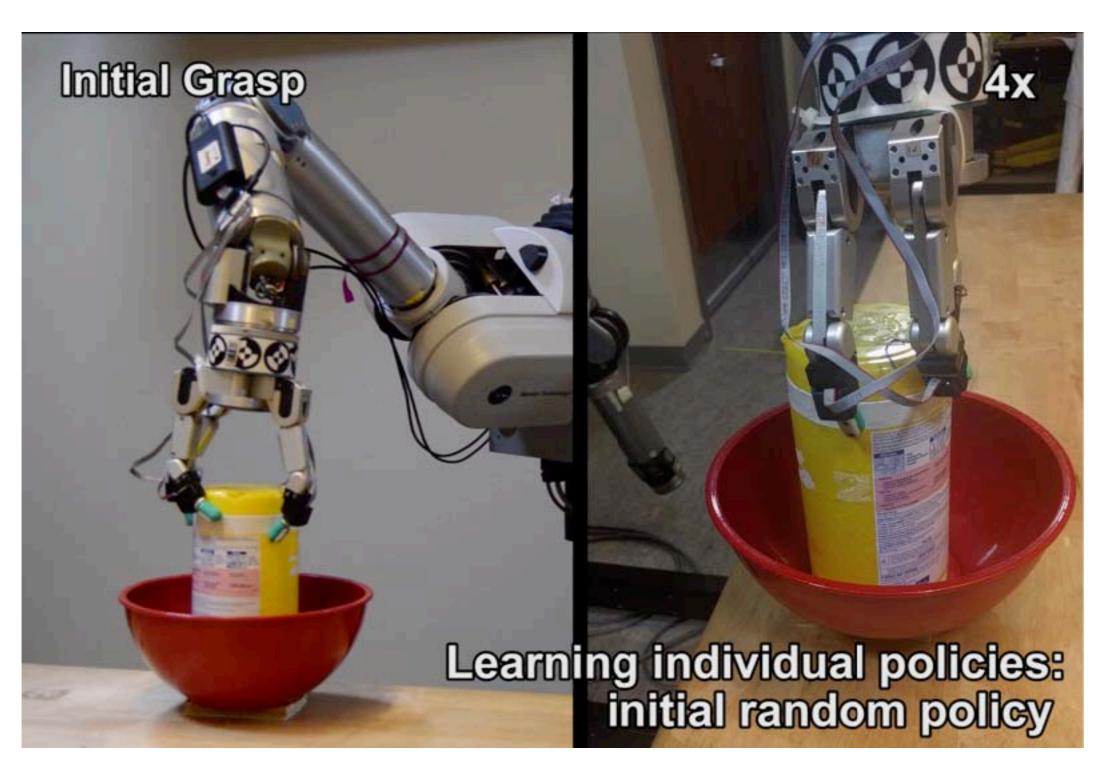
Regrasping

• Learn to predict errors and regrasp using tactile data



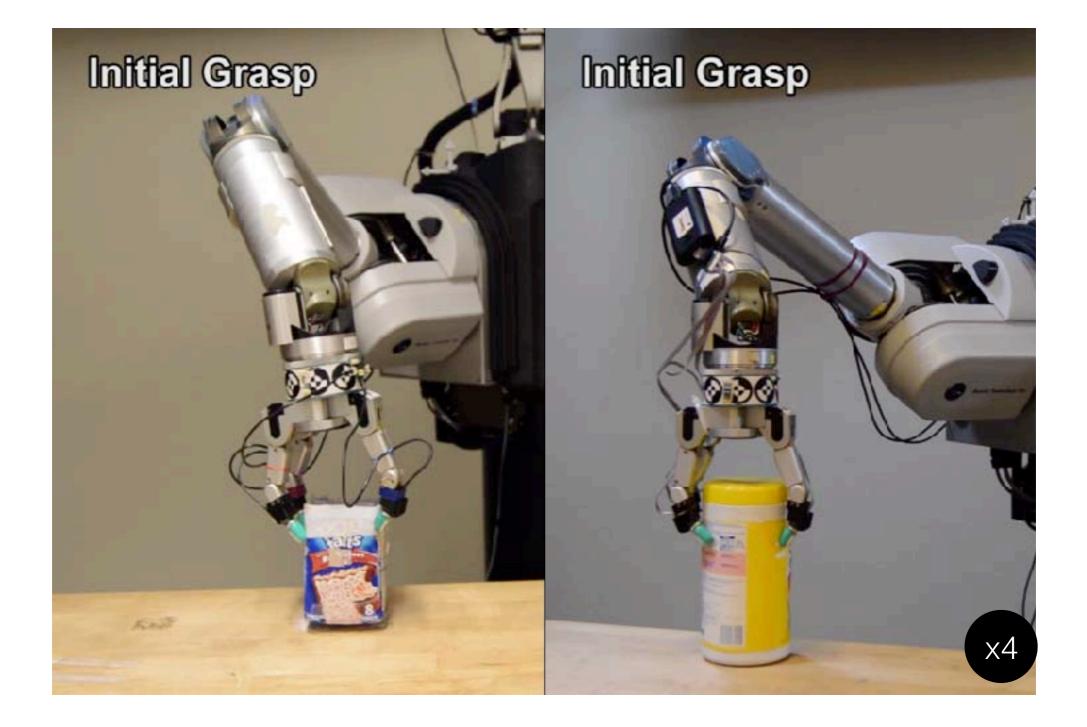
Adjust gripper position and orientation based on tactile



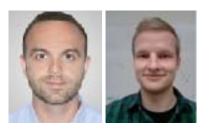


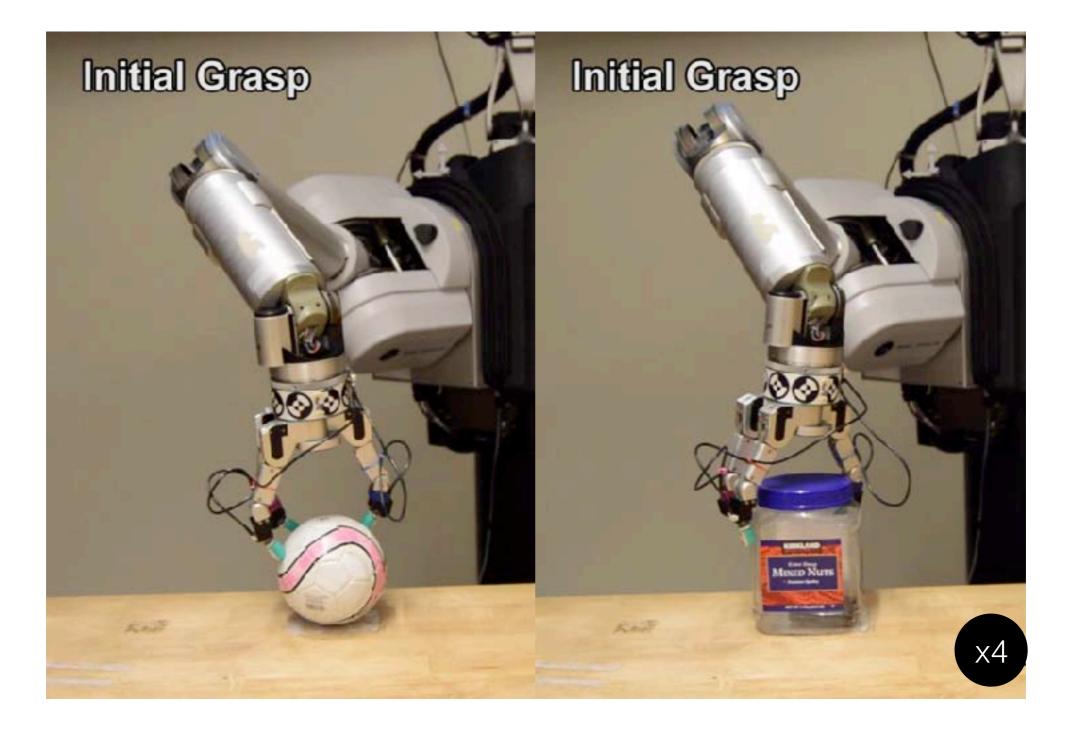
Learn regrasp policy parameters using relative entropy policy search [Peters et al. 2010]

Regrasping Results

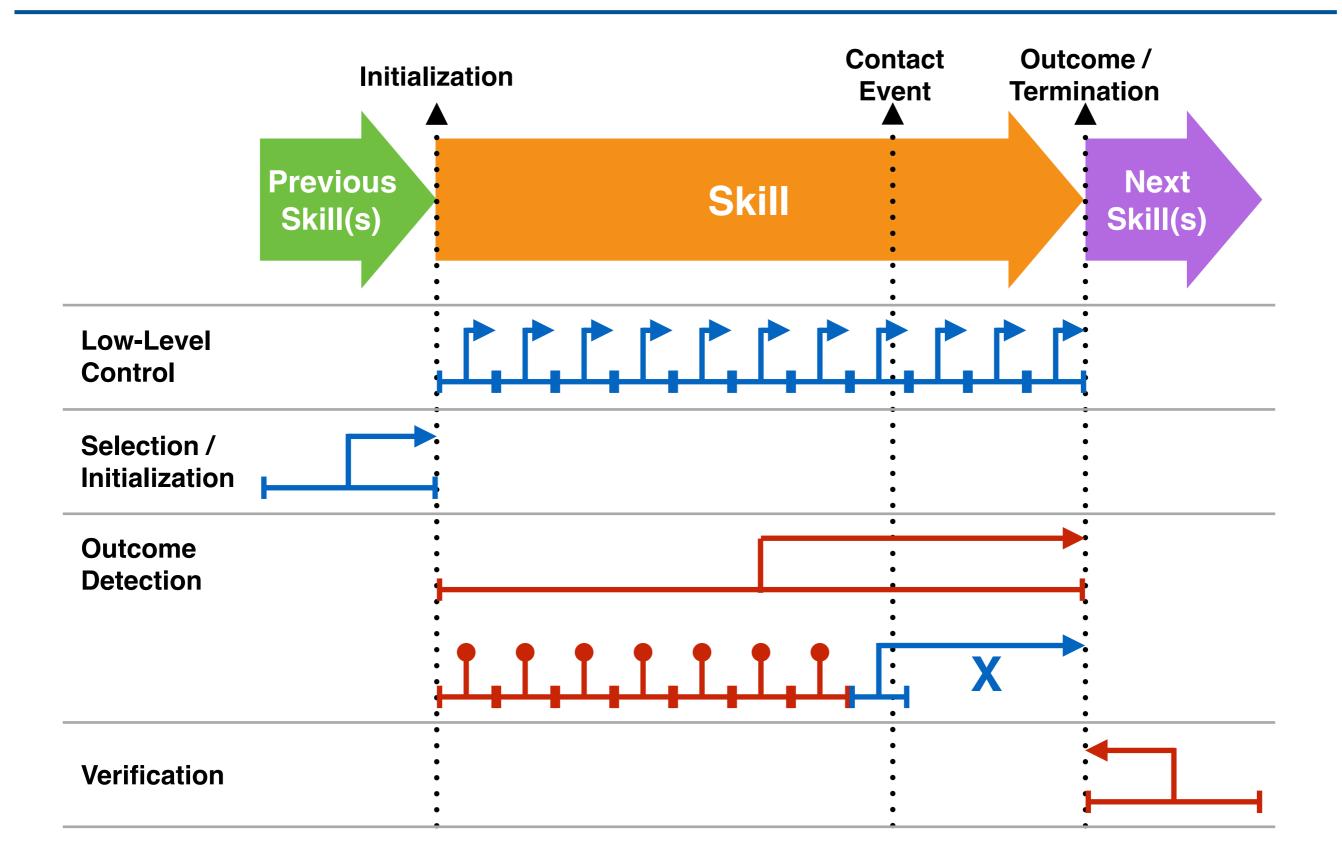


Regrasping Results

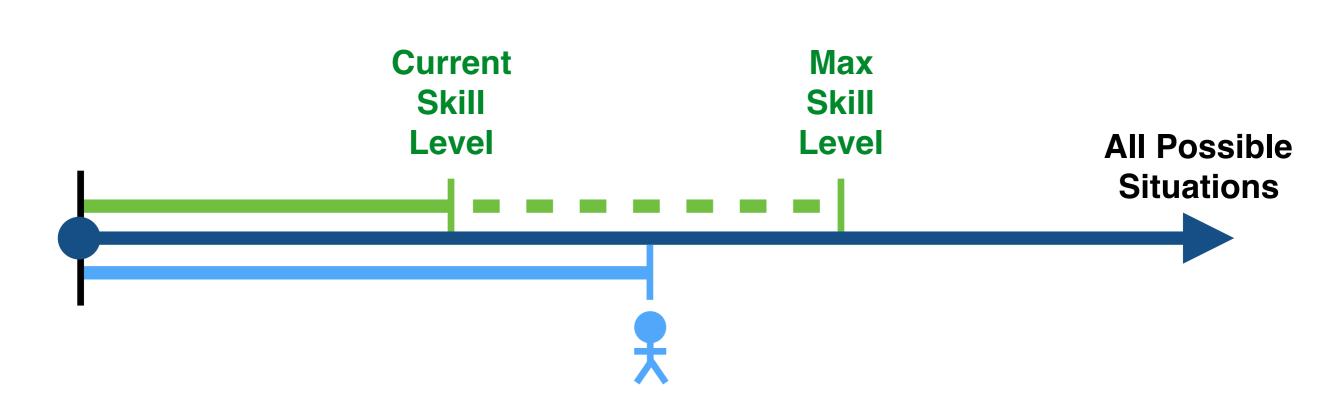




Sensory Feedback

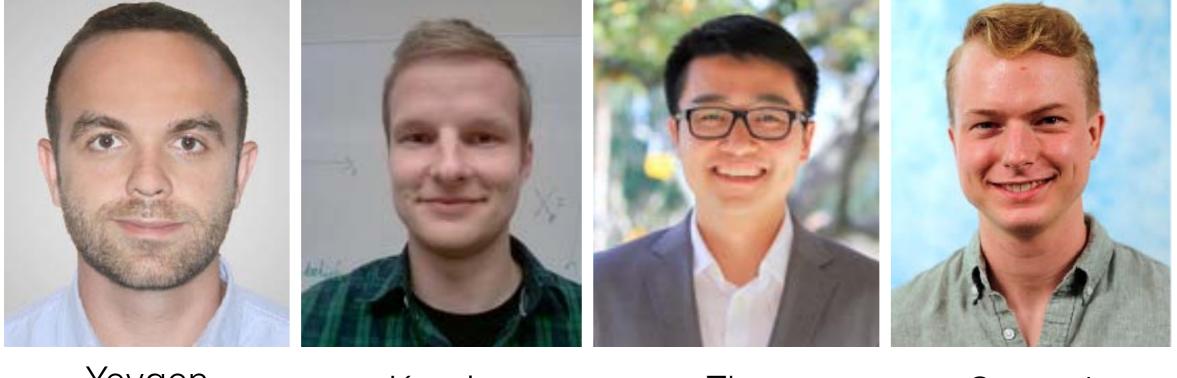


Key Challenge: Preconditions for Learning



Experiment Situations

"Students"



Yevgen Chebotar

Karol Hausman Zhe Su Samuel Clarke

Conclusion

- Learn skills that exploit manipulations' mode structure
 - Goals and errors match mode transitions for more robust skills
- Selecting and initialising skill
 - Consider contacts for setting goals and checking preconditions
- Monitoring skills during executions
 - Detect salient sensory events during mode
- Verifying skill outcomes
 - Verify mode transitions based on changing dynamics
 - Use self-supervised
- Future challenge: Learn to predict what can be learned